OTC 25381
AUV-Based 3D Laser Inspection for Structural Integrity Management in Deepwater Fields

T. Reeves, J. Jacobson, D. McLeod, Lockheed Martin Corporation
C. Embry, B. Nickerson, 3D at Depth
May 6, 2014
Agenda

• Background
 – Vision for AUVs in Deepwater Fields
 – Prior Work related to AUV-based 3D Imaging
 – Benefits of AUV-based 3D Laser Imaging

• Project Execution and Results
 – Project Objectives and Plans
 – Simulation Objectives & Results
 – Offshore Test Objectives and Results

• Conclusions
 – Summary of Results
 – Future Implications for Structural Integrity Management
Vision for AUVs in Deepwater Fields

- AUVs will offer significant improvements in safety and operating efficiencies as well as substantial reductions in cost over current methods.

- AUVs will leverage a wide range of inspection sensors and technologies, including video, photographic, sonar, laser, ultrasonic, magnetic, and others.

AUVs Will Become an Increasingly Important Tool for IRM in Deepwater Fields
Prior Work: RPSEA 09121-3300-05 “Autonomous Inspection of Subsea Facilities”

Project Objective:
- Develop and demonstrate 3D Modeling and Change Detection using an AUV-based 3D Sonar including:
 - Close-in, high resolution 3D sonar imaging
 - High resolution, geo-registered 3D models
 - Detection of changes against a priori models

The Marlin® AUV Builds Geo-Registered 3D Models “On the Fly” At Speeds of ~ 2 Knots
Prior Work: RPSEA 09121-3300-06
“High Resolution 3D Laser Imaging for IRM Operations”

Project Objectives:

• Develop subsea 3D laser imaging and measurement capability from TRL 2 to TRL 5:
 ✓ Pool test on tripod
 ✓ ROV Test Tank
 ✓ Offshore testing on tripod
 ✓ Offshore testing on ROV

Underwater 3D Laser Prototype Testing Has Produced Spectacular Results with Millimeter Accuracies
Benefits of AUV-based 3D Laser Inspection

- Benefits of geo-registered 3D models:
 - CAD Modeling for structural and thermal analysis
 - Precise Measurement / Metrology
- Benefits of AUVs over ROVs / Divers:
 - Smaller vessel (or no vessel)
 - Fewer people offshore
 - No umbilical management
 - Highly mobile platform for efficient IRM operations
- Benefits of AUV-based 3D Laser Inspection:
 - 3D model generated “on the fly”
 - Autonomous change detection without Operator Intervention
 - Rapid Condition Assessment

AUV-Based 3D Laser Imaging Holds the Potential to Become a Key Tool for Structural Integrity Management
Autonomous Underwater Inspection Using a 3D Laser

Project Overview

Project Objective
• Develop and demonstrate 3D Modeling and Change Detection using an AUV-based 3D Laser, including:
 – Close-in, high resolution 3D laser imaging
 – Generation of high resolution, geo-registered 3D models of subsea structures
 – Detection of changes against a priori models

4 Phase Project Plan:
• Requirements / Interface Definition
• Hardware / Software Design & Build
• Onshore Integration & Testing
 – 3D Laser FAT
 – Simulation Laboratory Integration & Testing
• Offshore Prototype Testing

Potentially Dramatic Cost Reductions and Improved Operating Efficiencies can be Achieved if High Accuracy Inspections can be Performed with an AUV
Phase 3: 3D Laser Factory Acceptance Test

- **Key Test Requirements:**
 - Sensor Packet Control Testing
 - Scanning Operations in Water
 - In-Water Range Demonstration
 - Scanning Operations in Air
 - Mechanical / Mounting Validation
 - Navigation / Serial Data Validation

- **Summary of Results:**
 - 2 Days of Sensor Testing Utilized
 - 42 Unique Tests Conducted & Passed
 - Final Delivery of:
 - DP2 Sensor Test GUI Simulator
 - DP2 Sensor Software Users Manual
 - DP2 Sensor ICD Final Version

100% of 3D Laser Sensor FAT Tests Achieved Pass Criteria
Phase 3: Laboratory Simulation

Objectives:

- Integrate the 3D laser interfaces into the system
- Maximize the use of actual hardware interfaces such as processors and sensors
- Use simulators and emulators in place of actual hardware
- Simulate AUV-based underwater 3D laser imaging
- Assess and optimize performance prior to offshore testing
Marlin Simulation Lab –
RPSEA LiDAR Configuration

Front End Investment in Laboratory Simulation
Substantially De-risks Offshore Operations
Three methods for scanning

- Continuous Line Scan Mode
- Full Scan Mode
- Bow Tie Scan Mode

All scan modes are fully programmable and reconfigurable at any time.
Simulated Vehicle Parameters & Noise Sources

Simulation Objectives:
- Simulate typical vehicle characteristics and evaluate performance on the specific test case(s)

<table>
<thead>
<tr>
<th>Vehicle Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical AUV Speed</td>
<td>1.0 m/s</td>
</tr>
<tr>
<td>Alternative AUV Speed</td>
<td>0.2 m/s</td>
</tr>
<tr>
<td>Cross Track Angle</td>
<td>+/- 15°</td>
</tr>
<tr>
<td>Cross Track Scan Rate</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Target Scan Range</td>
<td>3m – 15m</td>
</tr>
<tr>
<td>Scan Type</td>
<td>Bow Tie</td>
</tr>
<tr>
<td>Scan Pulses</td>
<td>504</td>
</tr>
<tr>
<td>Scan Frame Time</td>
<td>33msec</td>
</tr>
<tr>
<td>Scan Dead Time</td>
<td>9msec</td>
</tr>
</tbody>
</table>

Noise Source(s)
- Navigation Error
 - Standard
- Timing Error
 - 1.8 msec std dev
- Sensor Calibration – Offset
 - 1mm about all axes
- Sensor Calibration – Rotation
 - 0.25° about all axes
- Sensor Noise – Range
 - 1 cm std dev
- Sensor Noise – Pointing Angle
 - 0.02° std dev

Shows the vehicle pose, path, and bowtie scan for a single frame of the mooring chain scan simulation.
Jumper Metrology

- Simulation Images:

<table>
<thead>
<tr>
<th>Vehicle Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUV Speed</td>
<td>1 m/s</td>
</tr>
<tr>
<td>Target Scan Range</td>
<td>8m above wellhead flange</td>
</tr>
<tr>
<td></td>
<td>5.5m above manifold</td>
</tr>
</tbody>
</table>

OTC 25381 - AUV-Based 3D Laser Inspection for Structural Integrity Management - Jacobson
Pipeline Bar Anode Depletion

Simulation Images:

- Uncorroded Bar Anode

- Corroded Bar Anode

<table>
<thead>
<tr>
<th>Vehicle Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUV Speed</td>
<td>1 m/s</td>
</tr>
<tr>
<td>Target Scan Range</td>
<td>5 m</td>
</tr>
</tbody>
</table>
Pipeline Concrete Coating Damage

- Simulation Images:

<table>
<thead>
<tr>
<th>Vehicle Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUV Speed</td>
<td>1 m/s</td>
</tr>
<tr>
<td>Target Scan Range</td>
<td>5m</td>
</tr>
</tbody>
</table>
LiDAR Scans at 2 Knots Simulation

- Other Notable Test Cases:
 - Wellhead Verticality
 - Manifold Anode Depletion
 - Pipeline Bracelet Depletion
 - Pipeline Dent / Pit Detection
 - Mooring Chain Pit / Wear Damage Detection and Measurement
 - Platform Inspection
 - Spoils Volume
Laboratory Simulation - Conclusions

• Excellent Results for Some Test Cases:
 – Wellhead Verticality: < 0.08 degrees angular error
 – Jumper Metrology: < 0.5% length / elevation error
 – Anode Depletion: 2% to 10% dimensional errors
 – Spoils Volume: < 2% volumetric error

• Additional Effort to Assess / Optimize Other Test Cases:
 – Pipeline Dent / Pit / Concrete Coating Damage Detection and Measurement
 – Mooring Chain Pit / Wear Damage Detection and Measurement
Phase 4: Offshore Prototype Testing

• Test Objectives:
 – Image test targets using an AUV-based 3D laser
 – Generate geo-registered 3D models
 – Evaluate 3D model resolution and dimensional accuracy
 – Evaluate viability of AUV-based 3D inspection for use in deepwater fields

• Test Venue:
 – Local offshore waters adjacent Palm Beach, FL
 – Water depths 60 – 80 ft.
 – Currents 0.5 – 2 kt
Test Cases and Fixtures

Test Cases:

• Sandy Bottom Area:
 – Pipeline Test Fixtures
 – PRCI Pipeline Sample (6” ID, 6’ L)
 – Anode Volumes on Manifold
 – Mooring Chain
 – Jumper Metrology
 – Wellhead Verticality

• Downed Barge
 – Structural Inspection of the Barge
 – Spoils Volume
Offshore Prototype Testing
Progress To Date

• Dockside Integration Completed
• Test Fixtures Placed Offshore
• Testing in Progress
• Results Pending
Conclusions

• AUV-Based 3D Laser Imaging Offers Powerful Capabilities for Structural Integrity Management:
 – Imaging from Moving AUV is faster and more efficient than other means
 – Provides geo-registered 3D models with millimeter resolution
 – Provides autonomous change detection against a baseline model
 – Eliminates Human Fatigue and Inspection Data Overload
 – Leverages 3rd Party Software Tools from Terrestrial Survey Industry
 – More Accurate, Efficient Inspections ➞ Lower Overall Life-of-Field Costs

• Potential Applications Include:
 – Pipeline Inspection
 – Subsea Facility Inspection
 – Riser / Mooring Line Inspection
 – Jumper Metrology / Wellhead Verticality

AUV-Based 3D Laser Imaging Holds the Potential to Become a Powerful Tool for Structural Integrity Management
Acknowledgements

• Project Sponsorship by the Research Partnership to Secure Energy for America (RPSEA) with direct oversight and inputs from RPSEA Project Manager Mr. Donald Richardson

• Participation and Support from underwater laser technology developer 3D at Depth, including key contributions by Carl Embry, Brett Nickerson, and Mark Hardy.
Questions?